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     FUNCTION PROJECTIVE SYNCHRONIZATION OF A 
                         NEW HYPER CHAOTIC SYSTEM 
                            Ayub Khan1

  and Priyamvada Tripathi2 

 
 
Abstract- In  this  article  a function projective  synchronization (FPS) 
of two identical new hyper chaotic systems is defined and scheme of 
FPS is developed by using Open-Plus-Closed-Looping (OPCL) coupling 
method.  A new hyper chaotic system has been constructed and then response 
system with parameters perturbation and without perturbation. 
Numerical simulations verify the effectiveness of this scheme, which has 
been performed by mathematica. 
 
Index Term: Function Projective Synchronization, Chaotic systems and Hyper  
Chaos, OPCL. 
 

——————————      —————————— 

1. Introduction 
Chaos is a dynamical regime in 
which a system becomes 
extremely sensitive to initial 
conditions and reveals an 
unpredictable and random-like 
behavior, even though the 
underlying model of a system 
exhibiting chaos can be 
deterministic and very simple. 
Small differences in initial 
conditions yield widely diverging 
outcomes for chaotic systems, 
rendering long term prediction 
impossible in general. 
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Chaotic behavior can be 
observed in many natural 
phenomenon such as weather etc. 
Pecora and Carroll introduced a 
 
paper entitled Synchronization in 
Chaotic Systems in 1990. By that 
time, if there was a system 
challenging the capability of 
synchronizing that was a chaotic 
one. They demonstrated that 
chaotic synchronization could be 
achieved by driving or replacing 
one of the variables of a chaotic 
system with a variable of another 
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similar chaotic device. Chaotic 
synchronization did not attract 
much attention until Pecora and 
Carroll [4] introduced a method 
to synchronize two identical 
chaotic systems with different 
initial conditions. From then on, 
enormous studies have been done 
by researchers on the 
synchronization of dynamical 
systems[1, 2, 3]. In the last two 
decades considerable research 
has been done in non-linear 
dynamical systems and their 
various properties. One of the 
most important properties is 
synchronization. 
Synchronization techniques have 
been improved in recent years 
and many different methods are 
applied theoretically as well as 
experimentally to synchronize 
the chaotic-systems including 
adaptive control [5, 6, 7], 
backstepping design [8, 9, 10], 
active control [11, 12, 13], 
nonlinear control [14, 15] and 
observer based control method 
[16].  Using these methods, 
numerous synchronization 
problem of well-known chaotic 
systems such as Lorenz, Chen, 
L¨u and R¨ossler system have 
been worked on by many 
researchers. 

Also, several types of chaos 
synchronization are well known, 
which include complete 
synchronization (CS), 
antisynchronization (AS), phase 
synchronization, generalized 
synchronization (GS), projective 
synchronization(PS), and 
modified projective 
synchronization (MPS). Among 
all type of synchronizations, 
projective synchronization (PS) 
[17, 20, 21, 22] has been 
extensively considered because it 
can obtain faster communication. 
The drive and response system 
could be synchronized up to a 
scaling factor in projective 
synchronization. In this 
continuation of study, in order to 
increase the degree of secrecy for 
secure communications, function 
projective synchronization (FPS) 
[23] is characterized by a scaling 
function matrix. In this paper, we 
have constructed a new hyper 
chaotic system and verified the 
chaotic behavior of this system 
by time series analysis and 
chaotic attractors via 
mathematica. Hyperchaotic 
behavior of this system is 
discovered within some system 
parameters range, which has not 
yet been reported previously. 
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Since hyperchaotic systems have 
the characteristics of high 
capacity, high security and high 
efficiency, it has been studied 
with increasing interest in recent 
years [19, 20] in the fields of 
non-linear circuits, secure 
communications, lasers, control, 
synchronization, and so on. So, 
we have studied Function 
Projective Synchronization 
behavior for this new hyper 
chaotic systems, which is 
ofcourse more effective and 
useful in secure communication 
as FPS is more useful in secure 
communication as compare to 
others because of its 
unpredictability . Here we have 
used OPCL coupling scheme for 
FPS. Numerical simulations have 
been done by using Mathematica. 
2. Preliminaries 
In this section we mention some 
definitions and scheme of the 
main task. 
2.1. Function Projective 
Synchronization. Function 
Projective synchronization 
is defined in the following 
manner: 
Let x˙ = F(x, t) be the drive 
chaotic system, and y˙ = F(y, 
t)+U is the response system, 

where x = (x1(t), x2(t),… xm(t))T , y 
= (y1(t), y2(t), … ym(t))T , 
U = (u1(x, y), u2(x, y),… um(x, y))T 
is a controller to be determined 
later. 
Denote ei = xi−fi(x)yi ; (i = 1, 
2,…m), fi(x); (i = 1; 2;…;m) are 
functions  of x. If 
lim ( ) 0e tt =→∞

, 

e = (e1; e2; :::; em), then there 
exists function projective 
synchronization (FPS) between 
these two identical chaotic 
(hyperchaotic) systems, and we 
call f a scaling function matrix. 
Here we use the OPCL coupling 
method for FPS. 
2.2. Methodology for FPS via 
OPCL. Here, we will construct 
corresponding response system 
through the OPCL coupling 
method. Consider the following 
n-dimensional chaotic system as 
drive (master) system 

( ) ( )dx f x f xdt = +∆                              (1) 

where nx∈ℜ                           and 
( )f x∆  is the perturbation part of 

the parameters. Now, consider 
the following n-dimensional 
chaotic system as responsive 
system according to coupling 
method  
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( ) ( , )dy f y D y gdt = + ,             (2) 

where ny∈ℜ . The coupling 
function is: 

. ( )( , ) ( ) ( )

.( ),

f gD y g g f g H g
y g

∂= − + − ∂
−

where 
( )f g
g

∂
∂  is the jacobian 

matrix of the dynamical system. 
H is an n×n Hurwitz constant 
matrix, whose eigen values are 
negative and ( )g t xβ=  with 

( )tβ   as a scaling function which 
is continuously differentiable. 
When ( ) 1,tβ =±  system is 
complete synchronized or 
antisynchronized  accordingly. 
Our goal in this paper is to find 
out D(y, g) and hence find error 
dynamics of the system such that 
lim ( ) 0e t y gt = − =→∞

 

where .  is the Euclidean norm, 
then the systems (1) and (2) are 
said to be Function Projective 
synchronized. 
3. System Description 
3.1. Hyper Chaotic 
Rabinovich-Fabrikant system. 
The 
Rabinovich-Fabrikant chaotic 
system is a set of three coupled 
ordinary differential 

equations exhibiting chaotic 
behavior for certain values of 
parameters. 
They are named after Mikhail 
Rabinovich and Anatoly 
Fabrikant, who described them in 
1979 [18]. The equations of 
system are : 

1

2

3

2( 1 ) ,2 3 1 1
2(3 1 ) ,1 3 1 2

2 ( ).3 1 2

x x x x x

x x x x x

x x x x

γ

γ

α













= − + +

= + − +

=− +







 

where andα γ  are constant 
parameters that control the 
evolution of the system. For 
some values of andα γ  the 
system is chaotic but for other 
it tends to a stable periodic orbit. 
Now, we construct a new hyper 
chaotic system by introducing 
one more differential equation 
with a new parameter δ   in the 
above system as follows: 
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= + − +

=− +

=− + +









(4) 
 
This new system shows hyper 
chaotic behavior with some 
values of parameters and tend to 
stable periodic orbits with other 
values of parameters. We have 
investigated system’s behavior 
for different values of parameters 
 
 

Fig.1 
Chaotic behavior of the 
system with α = 0.14,γ = 1:1 
and −0.01 ≤ δ≤ 7650 tending to 
stable periodic orbits. 

 

 
Fig.2 Time series analysis of 
y1[t] with  α = 0.14, γ = 1:1 
and −0.01 ≤ δ≤ 7650. 
 
 

Fig.3 Time series analysis of 
y2[t] with α = 0.14,γ = 1:1 
and −0.01 ≤ δ≤ 7650. 
 

Fig.4 Time series analysis of 
y3[t] with α = 0.14,γ = 1:1 
and −0.01 ≤ δ≤ 7650 
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Fig.5 Time series analysis of 
y4[t] with α = 0.14,γ = 1:1 
and −0.01 ≤ δ≤ 7650. 
 

Fig.6 Chaotic Behavior of the 
system with α = 0:87, γ = 1:1 
and δ=1890. 

 
Fig.7 Time series analysis of 
y1 [t] with α = 0:87, γ = 1:1 

and δ=1890. 
 

 
 
Fig.8 Time series analysis of 
y2[t] with α = 0:87, γ = 1:1 
and δ=1890. 

 
Fig.9 Time series analysis of 
y3[t] with α = 0:87, γ = 1:1 
and δ=1890. 

 
Fig.10 Time series analysis of 
y4[t] with α = 0:87, γ = 1:1 
and δ=1890. 
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Fig.11 Chaotic Behavior of the 
system with α = 0:87, γ = 1:1 
and δ=-0.2. 

 
Fig.12 Time series analysis of 
y1[t] with α = 0:87, γ = 1:1 
and δ=-0.2. 

 
Fig.13 Time series analysis of 
y2[t] with α = 0:87, γ = 1:1 
and δ=-0.2. 

 
Fig.14 Time series analysis of 
y3[t] with α = 0:87, γ = 1:1 
and δ=-0.2. 

 
Fig.15 Time series analysis of 
y4[t] with α = 0:87, γ = 1:1 
and δ=-0.2. 
 
3.2.  Results and Discussions. 
In this section, we perform 
function projective 
synchronization of above 
described system via OPCL 
coupling method. Define 
following system as a drive 
system with parameters 
perturbation as 
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α α

δ δ

= − + + +∆

= + − + +∆

=− + +∆

=− + +∆ +









 where ,α γ∆ ∆ and δ∆  are the 
perturbation parts in the 
parameters. Now construct the 
corresponding response system 
via OPCL coupling method. 
The Jacobian matrix of the above 
system  is 

1 2

1 2

( )

22 131
23 3 13 1

2 22 3 1 3
0 3 3 4

02
3 01

2 2 2 0
3 3 3 2 32 4 4 2 3

f x
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x x
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γ γ

γ γ

α α
δ δ

∂
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 + ∆ + + −



− + + ∆


− −
 −






− − ∆ − 
− − − ∆ −   

Define Hurwitz matrix H as the 
unit negative matrix −I (as

( )g t xβ= ), 

then ( )f gH g
∂− ∂ = 

 

1

2 2 2
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− 


+ ∆ + − 
+ + ∆ − + − 

 
 
Therefore, response system after 
coupling is as follows 

2
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∂
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∂

∂
= − + + − −
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(6) 
As error dynamics is defined as 
e˙ = y˙ −g˙, so we have final 
equation of error dynamics after 
coupling and putting values of 

f(y), f(g) and ( )f gH g
∂− ∂  

in above equation as follows 
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β
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β β

δ β

β β

=∆ + + +

+ −

=∆ + + + −

=− ∆ − +

− − −

=− ∆ − −

− − −







  (7) 

So, from the above error 
dynamics we can conclude that 
FPS between two identical hyper 
chaotic system can be achieved. 
 
4. Numerical Simulations 
If Perturbation of Parameters of 
the response system of hyper 
chaotic Rabinovich-Fabrikant 
system are zero and β = 0.5 with 
the initial conditions of drive 
system [x1(0),  x2(0), x3(0), x4(0)] 
= [0, 2, 0.5,−0.2] and response 
systems [y1(0), y2(0), y3(0). y4(0)] 
= [0.5, 1,−0.1,−0.15] 
respectively. 
So, the initial conditions for 
[e1(0), e2(0), e3(0), e4(0)] = [0.5, 
0,−0.35,−0.05] 
diagrams of convergence of 
errors given below are the 
witness of achieving 
function projective  

synchronization between master 
and slave system. 

 

Fig.16 Convergence of error 
e1, t∈[0,10] 
 
 
 

 
Fig.17 Convergence error of 
e2, t∈[0, 10] 

 
Fig.18 Convergence of error 
e3, t∈[0, 10] 
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Fig.19 Convergence of error 
e4, t∈[0, 10] 
5.Conclusion: 
In this paper, we have 
investigated function projective 
synchronization behavior of a 
new hyper chaotic Rabinovich-
Fabrikant system . The results 
are validated by numerical 
simulations using mathematica. It 
has more advantage over other 
synchronization to enhance 
security of communicationas 
function projective 
synchronization is more 
unpredictable and moreover it is 
performed for hyperchaotic 
system, which makes it more 
useful. 
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